翻訳と辞書
Words near each other
・ Tsar Bomba
・ Tsar Boris (drama)
・ Tsar Cannon
・ Tsar Fyodor Ioannovich
・ Tsar Kaloyan
・ Tsar Kaloyan Municipality
・ Tsar Kaloyan, Razgrad Province
・ Tsar Kandavl or Le Roi Candaule
・ Tsar Lazar Guard
・ Tsar Maximilian
・ Tsar Nicholas
・ Tsar Osvoboditel Boulevard
・ Tsar Pea
・ TSAR Publications
・ Tsar Samuil Stadium
Tsai–Wu failure criterion
・ Tsakalidis
・ Tsakaling Gewog
・ Tsakalonisi
・ Tsakalotos
・ Tsakana Nkandih
・ Tsakane
・ Tsakane Mbewe
・ Tsakane Valentine Maswanganyi
・ Tsakani Mhinga
・ Tsakhats Kar Monastery
・ Tsakhiagiin Elbegdorj
・ Tsakhir
・ Tsakhkashen
・ Tsakhur


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Tsai–Wu failure criterion : ウィキペディア英語版
Tsai–Wu failure criterion
The Tsai–Wu failure criterion is a phenomenological material failure theory which is widely used for anisotropic composite materials which have different strengths in tension and compression.〔 This failure criterion is a specialization of the general quadratic failure criterion proposed by Gol'denblat and Kopnov〔 and can be expressed in the form
:
F_i~\sigma_i + F_~\sigma_i~\sigma_j \le 1

where i,j=1\dots 6 and repeated indices indicate summation, and F_i, F_ are experimentally determined material strength parameters. The stresses \sigma_i are expressed in Voigt notation. If the failure surface is to be closed and convex, the interaction terms F_ must satisfy
:
F_F_ - F_^2 \ge 0

which implies that all the F_ terms must be positive.
== Tsai–Wu failure criterion for orthotropic materials ==
For orthotropic materials with three planes of symmetry oriented with the coordinate directions, if we assume that F_ = F_ and that there is no coupling between the normal and shear stress terms (and between the shear terms), the general form of the Tsai–Wu failure criterion reduces to
:
\begin
F_1\sigma_1 + & F_2\sigma_2 + F_3\sigma_3 + F_4\sigma_4 + F_5\sigma_5 + F_6\sigma_6\\
& + F_\sigma_1^2 + F_\sigma_2^2 + F_\sigma_3^2 + F_\sigma_4^2 + F_\sigma_^2 + F_\sigma_6^2 \\
& \qquad + 2F_\sigma_1\sigma_2 + 2F_\sigma_1\sigma_3 + 2F_\sigma_2\sigma_3 \le 1
\end

Let the failure strength in uniaxial tension and compression in the three directions of anisotropy be \sigma_,\sigma_,\sigma_,\sigma_,\sigma_,\sigma_. Also, let us assume that the shear strengths in the three planes of symmetry are \tau_,\tau_,\tau_ (and have the same magnitude on a plane even if the signs are different). Then the coefficients of the orthotropic Tsai–Wu failure criterion are
:
\begin
F_1 = & \cfrac = & \cfrac} ~;~~
F_ = \cfrac} ~;~~
F_ = \cfrac} ~;~~
F_ = \cfrac ~;~~ F_ = \cfrac ~;~~ F_ = \cfrac \\
\end

The coefficients F_,F_,F_ can be determined using equibiaxial tests. If the failure strengths in equibiaxial tension are \sigma_1=\sigma_2=\sigma_, \sigma_1=\sigma_3=\sigma_, \sigma_2=\sigma_3=\sigma_ then
:
\begin
F_ &= \cfrac\left()\\
F_ &= \cfrac\left() \\
F_ &= \cfrac\left()
\end

The near impossibility of performing these equibiaxial tests has led to there being a severe lack of experimental data on the parameters F_, F_, F_ .
It can be shown that the Tsai-Wu criterion is a particular case of the generalized Hill yield criterion.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Tsai–Wu failure criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.